Background

Precision Medicine aims to improve patient outcome by moving treatment from the traditional “one-size-fits-all” approach to one that takes individual differences into account.

INOVATe (Individualised Ovarian Cancer Treatment Through Integration of Genomic Pathology into Multidisciplinary Care) is a research program that has been established to develop strategies to better define ovarian cancer patient subsets, based on tumour genomic profiling in conjunction with conventional histological subtyping, to optimise the selection of patients for novel molecularly-targeted clinical trials and ultimately to individualise treatment.

Methods

INOVATe is a multi-centre, collaborative research program being conducted in the major Gynaecological Oncology treatment and research centres across Sydney.

Women with ovarian, fallopian tube and primary peritoneal cancers are eligible for inclusion. An overview of the INOVATe clinical workflow is presented in Figure 1 and an overview of the INOVATe program is presented in Figure 2. Patients consented to the study receive standard-of-care primary treatment, specialised molecular testing is undertaken, with results available for allocation of patients to biomarker-based clinical trials at disease progression or relapse.

Next generation multi-gene mutation testing and whole genome copy number profiling are conducted (Qiagen Human Ovarian Cancer Panel, Illumina MisSeq (AGRF); Colorectal and Solid Somatic Mutation panels (Australian Clinical Labs); Illumina Infinium Human OmniExpress-24 BeadChip arrays (AGRF)).

A predictive logistic regression model is used to determine homologous recombination repair deficiency (HRD) status based on three genomic lesion scores (HRD score) obtained from SNP array data.

ccr2 copy number is measured by droplet digital PCR (ddPCR) (Bio-Rad).

Immunohistochemistry for protein biomarkers of interest including CCNE1, EpCAM and Mesothelin, is conducted using standard techniques.

Results

Recruitment commenced in March 2016 and 100 eligible patients have been consented as of 24 August 2017 (Figure 3). Molecular testing has been undertaken on 52 cases to date, with results for allocation of patients to biomarker-based clinical trials at disease progression or relapse.

Clinically significant mutations have been identified in BRCA2 (n=3), KRAS (n=5), PIK3CA (n=4), BRAF (n=3), ARID1A (n=2), RB1 (n=2) and PTEN (n=2). Mutations identified to date are consistent with the histological subtypes of the cases.

Eleven cases have undergone copy number profiling, with HRD scores calculated for six cases. Four cases were classified as HRD-intact and two as HRD deficient, predictive of response to PARP inhibitors and platinum chemotherapy.

ccr2 copy number has been measured in 45 cases with ccr2 gained (copy number >4) in four cases and amplified (copy number >8) in three cases, indicating eligibility for a ccr2-targeted clinical trial.

A local instance of cBioPortal has been developed to aid in the visualisation and analysis of the complex genomic data. A multi-site Molecular Tumour Board has been established for the return of the molecular results to the multidisciplinary clinical team and to enhance the team’s ability to interpret the molecular data.

Three patients have been entered onto early phase clinical trials thus far, three are pending, and five have alterations that could be targeted if the patients relapse with progressive disease.

Conclusions

The INOVATe study is developing a framework for integration of molecular pathology into current models of multidisciplinary care and implementation of precision medicine that is applicable not only to ovarian cancer, but to patients with a range of cancer types.

Acknowledgements

We would like to thank the patients who have consented to take part in this study. We also thank the GynBiobank at Westmead, the Kolling Biobanks and the Pathology laboratories for their help with sample collection, processing and storage. The INOVATe study is funded by a Translational Program Grant awarded by the Cancer Institute NSW.